Search results for "artificial hybrid"

showing 3 items of 3 documents

Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, …

2020

In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. G…

0301 basic medicineMating typeHistologylcsh:BiotechnologySaccharomyces cerevisiaeBiomedical EngineeringBioengineeringLocus (genetics)Ethanol tolerance02 engineering and technologySaccharomyces cerevisiaeBiologyGenome sequencingGenome03 medical and health scienceslcsh:TP248.13-248.65Artificial hybridWine fermentationHybridFermentation in winemakingGeneticsfungifood and beverages021001 nanoscience & nanotechnologybiology.organism_classificationYeastethanol tolerancegenome sequencing030104 developmental biologyS. uvarumwine fermentationartificial hybridRNA-seqPloidy0210 nano-technologyBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid

2021

During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethan…

GeneticsFermentation in winemakingWine0303 health sciencesExperimental evolutionStrain (chemistry)030306 microbiologySaccharomyces cerevisiaeGeneral MedicineSaccharomyces cerevisiaeBiologybiology.organism_classificationGenome sequencingSaccharomycesSaccharomyces uvarumYeast03 medical and health sciencesS. uvarumArtificial hybridAdaptationAdaptationRNA-seq030304 developmental biology
researchProduct

Differential Contribution of the Parental Genomes to a

2019

In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. G…

genome sequencingS. uvarumwine fermentationartificial hybridfungifood and beveragesBioengineering and BiotechnologySaccharomyces cerevisiaeRNA-seqethanol toleranceOriginal ResearchFrontiers in bioengineering and biotechnology
researchProduct